EE 527 MICROFABRICATION

Lecture 5 Tai-Chang Chen University of Washington

MICROSCOPY AND VISUALIZATION

- Electron microscope, transmission electron microscope
 - Resolution: atomic imaging
 - Use: lattice spacing.
- Scanning probe microscope (SPM) or (STM)
 - Resolution: atomic range
 - Use: surface characterization
- Atomic force microscope (AFM)
 - Resolution: nanometer
 - Use: surface characterization and measuring vertical dimensions.

LATERAL AND VERTICAL DIMENSIONS

- For device lateral dimensions, 10% deviation is usually accepted as a fabrication tolerance. Measurement precision should be 10% of that variation.
- Linewidth is often known as a critical dimension (CD). The measurement depends on edge detection in all methods.
- · Film thicknesses ranges from one atomic layer to hundreds of micrometers.
 - Conductive and dielectric films are measured by different techniques.
 - Optical thickness measuring methods: ellipsometry and reflectometry.
 - X-ray reflection (XRR): very thin films.

© UWEE TC Chen

Spring 2014

ELECTRICAL MEASUREMENTS

• Some electrical parameters:

resistivity $\rho = \frac{1}{nq\mu} \operatorname{cm} - \Omega$ resistance $R = \frac{\rho L}{WT} \Omega$ sheet resistance $R_s = \frac{\rho}{T} \Omega / \Box$

• The four-point probe (4PP):

For thin films

$$\rho = 2\pi s \frac{V}{I}$$

$$\rho = 4.53 \frac{V}{I} T$$

$$http://www.comment.org/CHARACT/Images/4pp-elip_image00$$

tion.org/CH

MECHANICAL PROPERTIES/TYPES OF BEAMS

MECHANICAL PROPERTIES/SPRING CONSTANTS

Example 3.8 Cantilevers with Parallel Arms

Find the force constant associated with the case g depicted in Figure 3.20.

Solution. Case (g) consists of two fixed-free cantilever connected in parallel. The pertinent moment of inertia of each arm is

$$I = \frac{w_2 t^3}{12}$$

The overall force constant is

$$k = 2\left(\frac{F}{x}\right) = 2\frac{3EI}{l_2^3} = \frac{Ew_2t^3}{2l_2^3}$$

Copyright ©2012 Pearson Education, publishing as Prentice Hall

© Karl F Böhringer/TC Chen

Autumn 2013

Analysis area

- Optical methods:
 - Large areas from lamp illumination, or micrometer laser spot.
- X-ray:
 - Large areas in the millimeter range
- Focused ion beam:
 - Submicron spots or broader beams
- Electron beam:
 - Most accurate and the smallest possible analysis volume.

© UWEE TC Chen

Spring 2014

PHYSICAL AND CHEMICAL ANALYSES

Analysis depth

- Electron:
 - Electrons have very small mean free paths in solids
 - Electron spectroscopies are very surface sensitive only top few nanometers.
- X-ray:
 - X-rays penetrate deep into matter.
- Ion:
 - Ion penetration depth is easily varied by changing energy.

© UWEE TC Chen

Spring 2014

Secondary Ion Mass Spectrometry (SIMS)

- The surface to be analyzed is bombarded by ions which knock atoms from the surface.
- Some of the atoms have been ionized, and subsequently mass analyzed.
- SIMS measurement is slow and expensive.

PHYSICAL AND CHEMICAL ANALYSES

Rutherford Backscattering (RBS)

• Energy spectrometry using MeV He⁺ ions. The incident He⁺ ions are elastically scattered by nuclei of the analytical sample, providing a quantitative elemental depth profile. Multi-component, multi-layered samples can be analyzed to a depth of 1mm or more.

RBS has the following characteristics:

- Multi-element depth concentration profiles
- Fast, non-destructive analysis (no sample preparation or sputtering required)
- Quantitative without standards

© UWEE TC Chen

Spring 2014

Rutherford Backscattering (RBS)

RBS has the following characteristics:

- High precision (typically ±3%)
- High sensitivity (e.g. 10¹¹ Au/cm² on Si, depends on Z and sample composition)
- Depth range typ. 0 1mm
- Depth resolution ~20 Å typ. near surface

PHYSICAL AND CHEMICAL ANALYSES

Auger Electron Spectroscopy (AES)

- An E-beam hits the surface and an inner core electron is rejected.
- The vacancy is filled by an electron from an outer shell.
- The third (auger) electron receives the energy and escapes.

Auger Electron Spectroscopy (AES)

• The energy of the escaping electron is determined by the atomic energy levels and can be uniquely identified.

PHYSICAL AND CHEMICAL ANALYSES

Energy Dispersive X-ray spectroscopy (DEX)

• Detect x-ray emitted by incident electron.

X-ray Photoelectron Spectroscopy (XPS)

• Detect electron energy emitted by incident x-ray.

PHYSICAL AND CHEMICAL ANALYSES

X-ray Diffraction (XRD)

• XRD is used to measure crystallinity.

http://www.spec2000.net/09-xrd.htm

© UWEE TC Chen

Spring 2014

SILICON

SILICON PROPERTIES

- The experimental values of silicon properties are relatively scattered.
 - Material properties are affected by a variety of subtle factors, such as material growth conditions, surface finish, and thermal treatment history.
- Macroscopic samples display less obvious because of the average effect from a large specimen.
 - For example, the fracture behavior of silicon is governed by the presence of flaws and preexsiting cracks.
 - Small single crystal silicon may exhibit large elastic strength and strain than bulk silicon.

© Karl F Böhringer/TC Chen

SILICON PROPERTIES

Crystal properties

PROPERTY	VALUE	UNITS
Structure	Cubic	
Atomic weight	28.0855	
Lattice spacing (a $_0$) at 300K	0.54311	nm
Density at 300K	2.3290	g/cm ³
Nearest Neighbour Distance at 300K	0.235	nm
Number of atoms in 1 cm ³	4.995×10^{22}	
	28 (92.23%)	
Isotopes	29 (4.67%)	
	30 (3.10%)	
Electron Shells	1s ² 2s ² 2p ⁶ 3s ² 3p ²	
Common lons	Si ⁴ +, Si ⁴ -	
	http://www.phy.duke.edu/~hx3/phy	ysics/silicon/silicon.

© Karl F Böhringer/TC Chen

Autumn 2013

SILICON PROPERTIES

Band structure properties

PROPERTY	VALUE	UNITS
Dielectric Constant at 300 K	11.9	
Effective density of states (conduction, N _c T=300 K)	$2.8 imes 10^{19}$	cm ⁻³
Effective density of states (valence, N _v T=300 K)	$1.04 imes 10^{19}$	cm ⁻³
Energy Gap E _g at 300 K (Minimum Indirect Energy Gap at 300 K)	1.12	eV
Energy Gap E _g at ca. 0 K (Minimum Indirect Energy Gap at 0K)	1.17 (at 0 K)	eV
Intrinsic carrier concentration	$1.5 imes 10^{10}$	cm ⁻³
Intrinsic resistivity	3.2×10^5	Ω-cm
	http://www.phy.duke.edu/~hx3	/physics/silicon/silicon.h

© Karl F Böhringer/TC Chen

Autumn 2013

SILICON PROPERTIES

Electrical properties

PROPERTY	VALUE	UNITS
Breakdown field	$pprox 3 imes 10^5$	V/cm
Mobility electrons	≈ 1400	cm ² / (V x s)
Mobility holes	≈ 450	cm ² / (V x s)
Diffusion coefficient electrons	≈ 36	cm ² /s
Diffusion coefficient holes	≈ 12	cm ² /s
Electron thermal velocity	2.3×10^5	m/s
Hole thermal velocity	1.65×10^5	m/s
Optical phonon energy	0.063	eV
Work function (intrinsic)	4.15	eV

http://www.phy.duke.edu/~hx3/physics/silicon/silicon.htm

© Karl F Böhringer/TC Chen

Autumn 2013

SILICON PROPERTIES

Mechanical properties

PROPERTY	,	VALUE	UNITS
Bulk modulus of elastic	ity	$9.8 imes 10^{11}$	dyn/cm ²
Density		2.329	g/cm ³
Hardness		7	on the Mohs scale
Surface microhardness Knoop's pyramid test)	(using	1150	kg/mm ²
Elastic constants		$\begin{split} C_{11} &= 16.60 \times 10^{11} \\ C_{12} &= 6.40 \times 10^{11} \\ C_{44} &= 7.96 \times 10^{11} \end{split}$	dyn/cm ² dyn/cm ² dyn/cm ²
Young's Modulus (E)	[100]	129.5	GPa
	[110]	168.0	GPa
	[111]	186.5	GPa
Shear Modulus		64.1	GPa
Poisson's Ratio		0.22 to 0.28 http://www.phy.duke.edu/~hx	- 3/physics/silicon/silicon.l

© Karl F Böhringer/TC Chen

Autumn 2013